Approximate Maximum Likelihood Blind Source Separation with Arbitrary Source Pdfs

نویسندگان

  • Mounir Ghogho
  • Ananthram Swami
  • Tariq Durrani
چکیده

We present a quasi-maximum likelihood approach to blind source separation (BSS) which is based on approximating the source distributions by their truncated Edgeworth expansions. The paper focuses on the 22 case, for which the problem is known to reduce to the estimation of a single rotation angle. Unlike existing maximum likelihood BSS techniques , the proposed algorithm is consistent for any source distribution, provided that the usual identiiability condition (at most one Gaussian source) is satissed. Closed-form expressions are derived for the true CRB, for the CRB corresponding to the Edgeworth approximation, and for the large-sample variance of the proposed estimator. The proposed algorithm is compared with existing approaches via extensive simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Equalization via Approximate Maximum Likelihood Source Separation

Blind equalization of single input multiple output (SIMO) FIR channels can be reformulated as the problem of blind source separation. It was shown in [4] that the natural gradient-based source separation method could recover source successfully for ill-conditioned channels since it has the equivariant property. However, the e ect of additive noise was not considered in [4]. In this letter we de...

متن کامل

Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models

In this paper, an approximate maximum likelihood method for blind source separation and deconvolution of noisy signal is proposed. This technique relies upon a data augmentation scheme, where the (unobserved) input are viewed as the missing data. In the technique described in this contribution, the input signal distribution is modeled by a mixture of Gaussian distributions, enabling the use of ...

متن کامل

Maximum Likelihood for Blind Separation and Deconvolution

In this paper, an approximate maximum likelihood method for blind source separation and deconvolution of noisy signal is proposed. This technique relies upon a data augmentation scheme, where the (unobserved) input are viewed as the missing data. In the technique described in this contribution , the input signal distribution is modeled by a mixture of Gaussian distributions, enabling the use of...

متن کامل

Minimum Entropy Algorithms for Source Separation

The minimum entropy or maximum likelihood estimation can be utilized in blind source separation problem. Based on the local generalized Gaussian probability density model, a set of general anti-Hebbian rule can be derived. This set of adaptation rules give promising results when we test the real recordings.

متن کامل

Optimal Sparse Representations for Blind Deconvolution of Images

The relative Newton algorithm, previously proposed for quasi maximum likelihood blind source separation and blind deconvolution of one-dimensional signals is generalized for blind deconvolution of images. Smooth approximation of the absolute value is used in modelling the log probability density function, which is suitable for sparse sources. We propose a method of sparsification, which allows ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007